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The three-dimensional, time-dependent convection-diffusion
equation (CDE) is considered. An exponential transformation is used
to collectively transform the CDE. The idea of global discretization
is used, where attention is paid to the whole transformed CDE, but
nottotheindividual spatial and temporal derivatives in the equation.
Four finite difference schemes for both CDE and transformed CDE
are established. The modified partial differential equations of these
schemes are obtained, which indicate that the trunction errors of
the schemes can be of second and fourth order, depending on the
prescription of the time step length. Some characteristic physical
parameters, i.e., local Reynolds number, local Strouhal number,
and viscous diffusive length, are introduced into the schemes and
the viscous diffusive length is found to be a significant parameter
in relating temporal discretisation with spatial discretisation. A se-
ries of benchmark analytical solutions of Navier-Stokes and Burgers
equations, as well as the numerical solutions using the well-known
discretisation schemes, are used to investigate the properties of the
derived schemes. The high-order schemes achieve higher resolu-
tions over the conventional schemes without decreasing much the
sparsity of the matrix structures. Grid refinement studies reveal
that the inverse exponential transformation of the finite difference
schemes tends to destroy some resolution of the schemes, espe-
cially for large local Reynolds number. © 1997 Academic Press

1. INTRODUCTION

One of the major issues is computational fluid dynamics
(CFD) is the discretization of the Navier—Stokes (N-S)
equations, which are sets of three-dimensional, time-
dependent, convection-diffusion equations (CDE). This
paper presents a new way to establish finite difference
schemes for the CDE, that is, global discretization. The
discretization of a partial differential equation (PDE) with
conventional finite differencing [1] is well known. Typi-
cally, discretisation pays attention to individual derivative
terms in the PDE, where the objective is to approximate
the PDE by replacing it with a set of discretized equations
that are created using some prescribed pattern. Here, the
PDE is treated in totality and the integral truncation error

!'To whom correspondence should be addressed.

of the discretization is then minimized. This idea is called
global discretisation where attention is no longer paid to
the individual spatial and temporal derivatives but to the
whole equation. With this idea, four finite difference
schemes are established for both the CDE and the trans-
formed CDE. The modified PDEs, following Warming and
Hyett [10], are obtained, which indicate that the schemes
are of either second or fourth order if the time step is
properly prescribed. A series of analytical solutions to both
the Navier—-Stokes and Burgers equations are chosen as
benchmark cases against which the new method is assessed.
The paper is organized as follows. Sections 2 and 3 demon-
strate the major steps in establishing the finite difference
schemes. Section 4 provides the formulation of the schemes
for the CDE and the schemes for the transformed CDE
are given in the Appendix. Section 5 presents the analytical
solutions and the numerical algorithms chosen to bench-
mark the schemes. The numerical experiments are de-
scribed in Section 6. The results are discussed in Section
7 and conclusions drawn from the work close out the

paper.

2. CONVECTION-DIFFUSION EQUATION
AND ITS TRANSFORMATION

Consider the general equation, i.e., the CDE:

2 2 2
a—(’b+axa—¢+aya—¢+aza—¢=b<a—(f+a—f+a—f>
at ax ay 9z 0x ady 0z
1
+s(t,x,y, 2).

The coeffecients a,, a,, a,, and b can be reasonably as-
sumed locally constant. In most existing solution algo-
rithms, e.g., SIMPLE [3], PISO [11], and fractional step
method [12], the pressure derivatives are treated as a
source term in the momentum equations. Here, it is as-
sumed that the source term in Eq. (1) is a function of both
space and time.
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FIGURE 1
Introducing the exponential transformation (a) second-order explicit scheme (SOES),
¢ = Tel(@/2b)x+(a,2b)y+(a,/2b)2) (2) Thie=co+ ¢ Tl]k1 + (T 1k T,H]k) 5)
) ) + es(Ti-t + Tiite) + ca(Tiky + Tihh)s
and applying the transformation to Eq. (1) leads to the
transformed version of the convection-diffusion equation T
b) second-order implicit scheme (SOIS),
or CEDT, ( ) p ( )
The=co+ ci(Thaje + Tlap) + co(Tho + Thir)
g— 82_T+82_T+62T +cT + 3 n n n-1 (6)
ot \ox2 9y 9z’ ¢ st 3) + 3(Th-1 + Ther) + ca T
where (c) fourth-order strongly implicit schemes (FOSIS),
a2+ a2+ a2 The=co+ ci(Tha + Thaje) + co(Thore + Thiak)
c= X Ty Tz ST — se—((aX/Zh)x-#(ay/2b)y+(aZ/2b)z). (4)
4b + c3(Th1 + Thrir)
. ) o . + ca(Tlyjoar + Thajoae + Thajoie + Thajeix)
The exponential transformation eliminates the convection
term in the CDE, thereby giving a conduction equation. +es(Tho1h-1 + Thotker + Thon-1 + Thorsr)  (7)
+ co(Tiijk—1 + Thijger + Thajk—1 + Thajker)
3. DISCRETISATION OF CDE" + o T + es(Tie + Ti) + co(Thioix + Tiiis)
Generally, the discretization of a PDE is to replace the + c1o(T f},;,] + T,,,M)
PDE point-by-point with a discretized equation, which is
basically a relation between the value at a central point (i, (d) fourth-order weakly implicit schemes (FOWIS),

j, k) and those of its neighbours in both space and time,
as shown in Fig. 1. The terms in (3) are discretised here
using the method outlined in Yang et al. [13], wherein the
nodal points are arranged to ensure that the odd deriva-
tives cancel in the Taylor series expansions about the nodal
points. Thus, dispersive errors are eliminated. The schemes
considered here are the explicit, implicit, weakly implicit,
and strongly implicit schemes, which depend on what time
layers of the nodal points are employed. With reference
to Fig. 1, the relationship between the value at node (i, j,
k) and those at its neighbours can be assumed, together
with their order; these are:

e =cot (T + Thap) + co(Thk + Thiw)

+ c3(Th-1 + Thxs1)

1 1 . 1
+ ca(Ti 51k + T + TrAj-1e + TEAj1k)

+es(Titear + Tidpa + Tiiter + Tidier)  (8)
+ co(Ti k1 + T + Ty + Tinen)
+ e Tt + cs(Tidy + Tiake) + co(Titi + Thile)

+ C10(T§]"1211 + TZ;+1)
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The subscripts i, j, and k represent the nodal points in
directions x, y, and z, respectively, and the superscript
stands for the temporal dimension. The coefficients, ¢;, in
the above schemes need to be determined. The derivation
of the finite difference form of the CDET using the second-
order implicit scheme (SOIS) is used to illustrate the major
steps and ideas. The other schemes can be obtained simi-
larly.

A Taylor series expansion about a nodal point when
using the SOIS reads

(T e+ Tho) = <T+ 21' Rl % Ty ),k )
(T,] et Thi) = (T+ e aZT mh;‘gin + >]k (10)
%(Tﬁ-kq + Thi) = <T+ L hzi %h 34—27;-}— . >:k (11)
Th! = LZO (=) ﬁ] (12)

where the spatial intervals of the grid points are denoted
by A, hy, and h; in x, y, and z directions, respectively, and
T is the temporal step length.

Define the operator

’ 2 2 2
a—,=b<"’—2+a—2+a—2>+c (13)
at ax ay 0z

so that Eq. (3) can be rewritten as
T _9T, o1 (14)
at ot

and, by successively substituting Eq. (14) into Eq. (12),
we have

n-1 — — (=71 "
T <1720 ( )6t”’ )z]k
e e[ =
s

0 q+1

(15)
gr-(a+1) o7 n
l(_ 7)" p1(g+D) S .
p: Jat ijk
By successively substituting Eq. (13) into Eq. (15), we
obtain

_kz)P_l(_k1)> 0*T 0T 82T>"
(p—1)! x> ay?  0z% )i
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(k) 2k (8T | 9°T 0T
ax d

(3

= (p=2)2! ay* ozt
64T 64T 84T n

ax?ay? T ay*az® T ox*az’

5 (—7)P ort
+p21 p! gp 10k

S0 &1 gp—(a+1) >n
+ 2 — (=1 ——=sT) +---, (16

g‘l t'1 (F_zqﬂp! o=@ Jo (16)

where k; = 7b and k, = 7c, the physical meanings of which
will be explained in the following section.
It should be noted that only the series of ¢ = 0 in Eq.
(15) is needed if the time step is prescribed small enough.
The two series have the properties:

ek = E lkp’
p:()p!
17)
n-1 _ - 1 ak_l
t, fdt_ /(ZIE(_ ) 3lk_1f tn’ T ['1 tn71

We can rewrite Eq. (16) as

apf(qﬂ)
Tgkl =

n
§7
ijk

(18)

- = 91
[ T v -

T °T  o°T

T+ (—k; — t+—
—k )2 [ % 4 4
o (———
2! ax*  ay* oz

4 4 n
2 82T2+2 62T2> +
dy“9z 0x°0z°/ |ijk

Now, substituting Eq. (8), (9), (10), and (18) into (6)
leads to

2 2 n
Th = Ao+ A, Tl]k+A2< T) + A (a_f)
ax? Jijk oy~ Jijk

2 4 n 4 n
+A< Ty 4 a—f) +A6<a—€

97> 0x” Jijk ay™ Jijk

4 n 4 n 4
+4; <a_€) +Ag (az—Tz) + Ay <62—T2

9z" Jijk 0x-0y“ /ijk ay<0z

4 n
+ Ay <_a r )

ijk

3tpf(q+1)

‘T
ax29y?

o

= 91 > 1 gp-(a+1)
S S s

p=q+l

n
sT| + ...
ijk
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For Eq. (6) to satisfy Eq. (19) at the maximum level, it is

necessary that Ay = A, = A; = A, = 0,and A; = 1, which
leads to a linear system of equations,

2 2 2 ek \/g A

h% 0 0 _k1€7k2 (&) Az
0 n2 0 —ke*|le| (A
0 0 i —ke*/\e) \A,

and an integral relation
tll T
Co — A[) + j C4S jjk dt
-1

which permits the coefficients in Eq. (6) to be determined.

Thus, the finite difference form of the CDET using SOIS
is deduced. The formulation of the finite difference equa-
tions for CDET using the other schemes can be found in
the Appendix. The truncation errors of the four schemes
are evaluated by obtaining their corresponding modified
PDEs, as outlined in [10]. Here, typically, the modified
CDE", when employing SOIS, reads

aT

2 2 92
——|:b<a—721+8—72w+ T>+CT+S:|
at ax ay 072

*T 04T o*T
=b kl(axza 2t 972 ax 2)
y y20z x%9z

h: k) 04T <h2 k) 94T
+G‘*3> \2772)58

h? k1> 847]"

ijk

(20)

PSS L

L 0P~ (g+1 n
' [ T) + ..
pq+]p

atP~ @D’ ijk

which indicates that the total truncation error of the
scheme becomes second order if the time step 7is of the
order of the spatial interval squared.

4. FINITE DIFFERENCE EQUATIONS OF CDE

The inverse exponential transformation

T([, X, Y, Z) — ¢(t, X, y, Z) e—((ax/2b)x+(ay/2b)y+(az/2b)z)
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can be applied to the CDET to obtain the finite difference
approximation to the CDE. In the following, k., k,, and
k. are defined as

ax

Ox -4
Sphe k= hy K

ke = 2b ':Zb

h,:

(a) second-order explicit scheme (SOES),

-1 1 1
()bl]k - Cc (;bn + cﬁzc d)t 1jk + cec ¢L+l]k + C?c Z 1k

1 1 -
+ Cﬁc ¢l]+1k + Cgc ¢l]k 1 + CZ ¢ljk+l + Sijk

1
b= 1z
cit = [R2h2h2 = 2ky (h2h2 + h2h? + h2h?)]e® d

dr' =k ke dy,  dit = kih2h2et dy,

d’g_l = k] h§h§€k2 d()

che! =dilel, cit=di e, ot =dyTlel,
Cch — d;}z—le—ky, n 1 — dn 1 k C;lc—l — diz1—le—lcZ

tﬂ
_ 1 1 1 -1
Sijk = L (c?7 sy + e Sicij T Coe S Tl 'Sk

n-1

-1 -1 -1 .
+ Che 'Siprik T Che i1+ Cle Sie) dt

(b)

second-order implicit scheme (SOIS),

l]k CWCd)l 1jk + cecd)Hl]k + CSC¢l] 1k + Cna¢1]+lk
-1 -1
+ ChePli + el + T Pl + S

1

do = RZhZhE + 2k, (W2h2 + h2h2 + hZhZ)

et = hihihie*2 d,

tﬂ —
Sijk = L i lsedt, di = kihyhidy,
1

n-

che=dreks, ch.=drers, cl=dlel

cre=dre™s, cpo=drets, cL=dle ™t

(c) fourth-order weakly implicit scheme (FOWIS),

d)tjk CWCd)l 1jk + Cecd’lﬂ/k + CSCd)lj 1k + Cnc d)tﬁlk

1
+ cbcd)z]k 1 + th¢1]k+1 + cwsc ¢l -1k + Cwnc¢t 1j+1k



n-1

Ce

d

Cie

Che
as!
dit
Clhse
Clone
Clap

n-1
Cwer

dn—l
x
-1
Clie
n—-1
dy
-1
Cse
n—-1
d;

-1
Che

Siik
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+ el Pk + il ek + Clp P i
+ el P i + Clap Piiin-1 + ' Biiiin
+ b Pt + Clhet Dt + Clhp Pl
+ cl Pl T P+ e iy

+ e il + i Tk + e ik

+ cp Pk + el it + Sk

1
 6hIhZh2 + 12k, (h2h: + h3h2 + h2h2)

= [6h2h2h2 — 4k (h2h2 + h2h2 + h2h2)]e d

= h3h3(6k, — h3) do,  dy = hih2(6k, — h3) do,

= hih3(6k, — h3) dy

=drers, ch.=dle ™, o= dhety,

=dye™ ™, ch.=dle, cL=dre

— K R2(R2 + B2)ekody,  dls = ko b33 + h2)eka dy,
= klhi(h% + h%)ek2 d()

— d?;lek"‘+k}’, c{?v;}: — d;i;lekxfky’ C?{cl — d))z;lefk;rky’
— d;t;le_kx_ky Ci‘ls_hl — d;lz—leky+kz’ C?S—tl — d;z"leky"kg

— d;l;le—kerkz’ C?&;tl — d;l;lefkysz C%;}) — dﬁ;lekarkz’
=di; el

n-1 _ d;lz—le—karkz’

n-1 — gn-1,-k -k
Cech = Cect _dxz e "x 2

= [W2h2h2 + 2k, (h2h? — h2h2 — h2h?)]e* dq,
=dnlek, onl=gdn-lek
— [12R2R2 + 2k (212 — W2R2 — I2h2)]e* do,
_ d;—lek},, et = dzyrle—ky
— [12R2R2 + 2k (212 — W2R2 — 2h2)]e* do,

— d}ziflekz’ C?{l — diziflesz

= f’” (e si + clelsi 1 + s
- c ijk we Di-1jk ec Vit+ljk
+ e s+ e Sk T B St T+ Cl i
+ CldSictj-1k Tt CrmeSictjr1x T ChSivtjo1k
+ Stk + ChE Stk T Ch Stk
+ i Siik-1 T Chl Sk F CrebSicjk-1

n—-1 n-1 n-1 .
+ Ol Sictjkr1 + Coap Sivijk-1 T+ Clar Sivijes) db;
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(d) fourth-order strongly implicit scheme (FOSIS),

1 J— n n n n n n n n
e = Cue@ ik T Cocdliije T Coedli 1k + Che Plirik
n n n 1 n 1 n 1
+ Chedlic1 T Cledficir T Chisedi i1k T ConePivjrik
n n n n n n
+ Cledlitj1k T Conc®lirjrin T ClspPli-16-1
n n n n n 1
+ Cladlj-11+1 T ConpDij+1k-1 T ConPlj+14+1
n 1 n 1 n 1
+ Chepditjk-1 T Chaditjks1 T CoepPliijn—1
+ ot ¢n X +Cn—1¢(q—l + cn—l n-1
ectPi+1jk+1 c ijk we Pi-1jk
1 4n-1 1 4n-1 1 4n-1
+ ¢l Pl T ¢l Dtk T Che i
n—1_gn-1 n—1_gn-1
+ che Pt + el Dl + S

1
- 6h2h3h + Aky(hih} + h2h2 + hih2)

do

crt = [6h2h2h2 — 12k, (R2R2 + h2h2 + h2h2)]e® dy
dy = [2ki(hyhs — hihy — hih?) — hihihz] do,

Che = dliers, cl.=dle ™

dy = [2ki(h3hZ — hihy — hyh?) — hihih?] d,
ch.=dger, cp.=dye™

d? = [2ki(hih3 — hih? — hih?) — hihih?] do,
ch.=dre*:, ol =dre*:

di, = kihi(hi+ hi)dy, dy,=kihi(hi+ h?)d,,

di. = kihi(hi+ h?)d,

n  — Jn ,k +k n  — Jn ,k.—k n — Jgn ,—k .tk
Cwsc = dxye Y, Cywpe = dxye © Y, Cese = dxye rY
n — Jn ,-k -k n — Jn ,k tk n — Jgn ,k -k
Cenc = dxye * Y Cesh = dyze v, Cegt = dyze Yo
n — Jn ,—k +k n — Jn ,—-k -k n  — gn ,k +k
Cenb = dyze v, Cepr = dyze v Cyeh = dxze )

k—k —k Tk,

n _— Jn n _— Jn —k —k
cht_dxze * o Cecb_dxze s

Coor = die "
17l = W2h2(6ky + h2)e® d,

il =dittel, cit=dile™s,
il = h2h2(6k, + h2)eb dy,
cit=dytes, cnt=dile™
dr ' = hihi(6k, + h2)e*2 d,,

cht=drleks, cpt=dile
tn
— n-1 n-1 n-1
Sijk = ft (c?7 sy + Clve'Sicijne + Coe 'Sivaji
n-1

n-1 n-1 n—-1 n-1
+ i Sk T e Sy t Sk T cl Sike) At
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FIGURE 2

The truncation error of the second-order schemes is

1 1 1
o (2 h?;‘k}i) +0 (2 h§fk}i> +0 (2 hﬁik}i) +0(7),

i=0 i=0 i=0

while the truncation error of the fourth-order schemes is

2 2 2
o3 hgik%z) o3 hgfk%z) 10 (2 i)

i=0 i=0 i=0

+0

1

(E h%x‘k{f) (2 hifk%f)
L =0 |

i=0

+0

1 1 ]
E hii/di) <Z h%ik%')

i=0

+0 + O(7).

Here, it should be noted that the trucation errors can be
separated into two parts. The first part is basically the
products of A.ky, h,ky, h k; and the spatial derivatives of
the unknown variable ¢. The second part is the product

of 7 and the derivatives of the source term s, which can
be easily controlled if the source term is known.

5. BENCHMARK ANALYTICAL SOLUTIONS AND
NUMERICAL ALGORITHMS

The accuracy and numerical behavior of the four
schemes outlined in the previous section are compared
to those of conventional numerical algorithms. The new
schemes and the conventional methods are benchmarked
against analytical solutions to Burgers equations and
Navier—Stokes equations. Additionally, a grid refinement
study is done.

The first nonlinear analytical solution to Burgers equa-
tions was given separately by Hopf [14] and Cole [15].
Cole [15] pointed out that this transformation could be
interpreted as a multidimensional transformation. Follow-
ing Cole’s idea, Fletcher [16] obtained two-dimensional
steady solutions to Burgers equations and this approach
is extended here to three dimensions and time. The equa-
tions are

%)—Fua—d)-kva—q&-i-wa—(ﬁ:L

2 2 2
<6_¢> Lo a_¢>
ot ax ay 9z Re

ox?  ay*  9z°
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FIGURE 3

where, in general, ¢ = u, v, w.
The nonlinear, but exact, solutions are

2 . .
=g [aze MR p 77 cos(n, mx) sin(n,wy) sin(n, 7z)] do
2 —A(t/Re) : :
V= "Re [aze n,m sin(n,mx) cos(n,my) sin(n,mz)] dy
2 —A(1/Re) : :
w=—"pe [aze n.msin(n,7x) sin(n,my) cos(n,mz)] dy,
where

A=m?(n? + ni + n),

1
dy= - - - )
" ay + ae RO sin(n, mx) sin(n, my) sin(n,7z)

where a; and a, are adjustable constants which control the
amplitude of the solutions.

The exact solution is demonstrated, in part, by the vector
plot in Fig. 2, which displays the velocity field on three
surfaces of a cube, where three wavenumbers and two
parameters have been used as n, = n, = n, = 3,a; = 1,
and a, = 0.1.

Asis well known, the three-dimensional time-dependent
Navier—Stokes equations are

v 1
—+v-Vv=-Vp+—V?
5 T Vv Vp Rev v,

where v = (u, v, w) is the velocity vector and V =
(8/0)i + (9/9,)j + (9/3z)k.

Steinman et al. [17] provide a class of exact solutions for
these equations, combined with conservation of mass,

U= —ae" TR sin(ary * a,z) + " cos(arx = a,y)]
V= —ae TRI[e% sin(arz = ayx) + e cos(ary * a,z)]
W = —are 1R sin(arx * ayy) + €™ cos(arz + a,x)]

p=—5W?+v?+ w?),

where a; and a, are adjustable constants, which control
the amplitude and frequency of the solutions.
The flow field produced by these exact solutions is dis-
played in part in Fig. 3, where a; = 27 and a, = 0.1.
Several types of numerical algorithms for the solution
to the CDE are available; here, we choose those given
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in Patankar [3]. The exponential scheme of Patankar is
adopted for spatial discretization. In the temporal direc-
tion, both first-order implicit and Crank—Nicholson im-
plicit schemes are used. Since the issue of velocity-pressure
coupling is not considered in this paper, there is no need
to use a staggered grid. The arrangment of the collocated
grid and the corresponding control volume in two dimen-
sions is given in Fig. 4.

6. NUMERICAL TESTS

6.1. Boundary and Initial Conditions

The Burgers and Navier—Stokes equations are solved,
both analytically and computationally, over a cubic do-
main. The time dependent boundary conditions are pre-
scribed by the analytical solutions on the surfaces of the
cube. The initial conditions of the flow are those corre-
sponding to analytical solutions at ¢t = 0.

6.2. Error Evaluation

The relative error fields are determined between the
numerical and the analytical solutions, that is, & =
(faum — fana)/fave, Where f can be any variable of u, v, w;
foum and fi,. are numerical and analytical solutions and
fave = [(l/N)(E,il 2)]"2, where f, is the value of ana-
lytical solution on a nodal point #n and N is the number of

XU, MATOVIC, AND POLLARD

nodal points. The error of a scheme is estimated as the
maximum value of the three rms relative errors, ¢,, &,,
and g,,.

6.3. Scheme and Nomenclature Specification

Six numerical schemes are used to solve both Burgers
and Navier—Stokes equations. The schemes are: second-
order explicit scheme (SOES); second-order implicit
scheme (SOIS); fourth-order strongly implicit scheme
(FOSIS); fourth-order weakly implicit scheme (FOSIS),
which are supplemented by two other, more traditional,
schemes: a temporally first-order implicit scheme (FOIS)
and the Crank—Nicholson implicit scheme (CNIS).

6.4. Burgers Equations

In the numerical tests with Burgers equations, some
common test parameters are chosen. The three spatial
wave numbers in the analytical solution to Burgers equa-
tion are n, = n, = n, = 3. The two adjustable parameters,
which control the amplitude of the solution, are a; = 1.0
and a, = 0.1. Of course, other values can be easily chosen.
The total integration time is 0.1 and the computational
domain is cubic at 1 X 1 X 1 (dimensionless) and equally
divided into 19 X 19 X 19 control volumes.

In Test I, the time step, typically, is chosen as 1.0 X 1072
and the Reynolds number is 10. Table I gives the rms
relative errors for these six schemes, after 100 time steps.
It should be noted that the time step for the FOSIS is
chosen as 1.0 X 10~% otherwise a stable solution could not
be obtained.

The rms error distributions on one plane that result from
applying the six schemes are presented in Fig. 5 with the
error axes scaled to the same level. Increaseing the Reyn-
olds number to 100, while maintaining the time step as
1.0 X 1073 produces little change in the magnitudes of the
rms relative errors, after 100 time steps as noted in Table I1.

A number of grid refinement tests are performed. Pa-
rameter a; in the analytical solution of Burgers equation
can be adjusted to control the amplitude of the velocity.
Numerical tests show that the behaviour of SOES, SOIS,
FOIS, and CNIS are similar to one another, while those
of FOWIS are almost the same to FOSIS. Figure 6 displays
the typical numerical behaviour of SOES and FOWIS
when the grid spacings are refined. These results will be
discussed later.

TABLE |

The Comparison of RMS Errors

Schemes SOES SOIS

FOWIS

FOSIS FOIS CNIS

Rms errors 9.3 X 10°° 5.6 X 1072

17 x 10

9.0 X 10* 6.0 X 102 3.4 X 102
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TABLE Il

The Comparison of RMS Errors

Schemes SOES SOIs FOWIS FOSIS FOIS CNIS
Rms errors 33 x 1073 38 x 10°® 53 x 107 53 X 10™* 1.2 X 1072 6.9 X 1072
TABLE Il
The Comparison of RMS Errors
Schemes SOES SOIs FOWIS FOSIS FOIS CNIS
Rms errors 3.1 x 1073 1.7 X 1072 3.6 x 10* 1.7 x 10 1.7 X 1072 7.6 X 1073

6.5. Navier—Stokes Equations

In the numerical tests with Navier—Stokes equations,
some common test parameters are chosen. The number of
control volumes is chosen as 19 X 19 X 19. The computa-
tional domain is set to a cube with side lengths of unity.
The adjustable parameter, which controls the amplitude
of the solution, is a; = 27 and a, = 0.1, which controls
both the amplitude and the wave number of the solution.
The time step is chosen as 5.0 X 1072 and total integration
time is 0.5. The Reynolds number is set at 10. Table III
gives the rms relative errors of the six schemes after 100
time steps. It should be noted that the time step is chosen
as 2.5 X 107% for SOES and as 1.0 X 10~ for FOSIS to
enforce a stable solution.

The rms error distributions on one plane are presented

102 ¢ - :
F OSOES with @o=100
-+ SOES with (7o =10
| ©SOES withdo=1.0
100 | & FOWIS with a;=100! -
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S
5 [ T
= 17N
¢ 10% |
Y g
2
&
[5)
- 5
- 10 g
g £
10° |
107 : : —
10" 10

Number of grid intervals

FIGURE 6

in Fig. 7 with the error axes scaled to the same level.
Increasing the Reynolds number, integration time, and
time step to 100, 10, and 0.1, respectively, while decreasing
a, 10 0.01, gives the rms relative errors, after 100 time steps,
as noted in Table IV. It should be noted that the time step
is chosen as 1.0 X 107 for SOES and as 1.0 X 107> for
FOSIS to enforce a stable solution.

The grid refinement studies are done also in this case.
Parameter a, in the exact solution of N-S equation is used
to control the amplitude of velocity. Again, it is observed
that the behavior of SOES, SOIS, FOIS, and CNIS are
similar to one another, while that of FOWIS is almost the
same as FOSIS. Figure 8 shows the numerical behaviour
of SOES and FOWIS when the grid spacing is refined. The
results will be commented upon in the following section.

7. DISCUSSION

Usually, the conventional higher order difference
schemes achieve higher order accuracy by introducing
more neighbouring grid points into the schemes, for exam-
ple, Rai and Kim [7], which results in decreasing the spar-
sity of the discretized equation. And still further, the com-
pact difference schemes proposed in Lele [9] lose the sparse
property, which leads to a dense matrix when introducing
the derivatives on the center and its neighbour points. The
major advantage of the higher order difference schemes
(FOWIS and FOSIS) is that higher order accuracy is ob-
tained by decreasing the sparsity of the discretized equa-
tion as little as possible, which will significantly reduces the
computational work required to solve the sparse matrix.

The formulations of the difference schemes reveal three
types of characteristic parameters in the discretization of
CDE. The first type, k., k,, k., represents the local Reyn-
olds numbers based on the grid sizes in three spatial direc-
tions. The second type is the diffusive length, k; = 7H, which
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TABLE IV

The Comparison of RMS Errors

Schemes SOES SOIS

FOWIS

FOSIS FOIS CNIS

Rms errors 1.1 X 1072 5.1 X 1072

7.9 x 10*

18 x 10 5.0 X 102 14 x 102

can be interpreted as the region affected by molecular
diffusion within the prescribed time interval of 7. Actually,
via this parameter, the time interval 7 can be equivalent
to the spatial step length. The third type, k,, which, by
introducing a characteristic grid length size A, can be re-
written as k, = —U?7/(4b) = —1/4(UA/b)(7U/A) and
U? = a; + a; + az. Thus, the physical interpretation of
k; is the ratio of the local Reynolds number UA/b and the
local Strouhal number A/(7U).

The transformation brings some numerical dissipation
into the difference schemes. This can be understood by
noticing that the effect of the transforamtion is to weight
the neighbours with respect to the central nodal point; this
weight is dependent upon the magnitude of the local grid
Reynolds number. To qualitatively check the property of
this dissipation, the method introduced in [2] can be used.
The discretization form for the unsteady one-dimensional
convection-diffusion model equation (see Patankar [3])
reads

k -k
o = ky 2e*x o+ ki 2e "« b
L2422k ekt el T B2 4 2k efi e R T

; OSOES with @1=0.001 |
i +-SOES with @1=0.01
r ©SOES with a,=0.1
®FOWIS with @,=0.001 |
-+FOWIS with a,=001 [
= FOWIS with ¢,=0.1

rms relative error

10° : : e
10' 102

Number of grid intervals

FIGURE 8

while by the method introduced in this paper, it reads

q’)’," = —kl ekxd)” + —kl e ke d)”
PTR2 42k, TN B2 4 2k, a
hz
+ Lk gn-l
ESTASO

where k, in a one-dimensional case should be written as
k, = 1c, c = —a?/(4b).

Now, we see that the appropriate dissipating (or
weighting) function form should be 2¢X+/(e*x + e *+) rather
than eXx for convection-dominated one-dimensional flows.
The two functions are shown in Fig. 9, where it is seen that
the functions are in accord only when k, (local Reynolds
number) is small. This indicates that the schemes for CDE
are only suitable for small local Reynolds number. Further-
more, the grid refinement studies reveal (Fig. 6 and 8)
that the higher order schemes are sensitive to the local
Reynolds number and the order of the scheme resolution
tends to deteriorate with increasing local Reynolds num-
ber. This is deemed to be an impediment and future work
will be done to alleviate this defect.

It is interesting to note that the form of the transforma-
tion function, i.e., Eq. (2), is similar in form to the differen-
tial filter function proposed by Germano [18] for use in
large eddy simulation (LES). In LES, the effect of the filter

3
25 -
-+ - Dissipation function e*
Lo . ek
- D 1 funct ——— ‘.
§ Py issipation function —=——
3 :
> ,
5 1.5 >
B
5
w 1
05 |
0
-1 -0.5 0 0.5 1

Local Reynolds Number k.

FIGURE 9
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is to separate the large and small scales. The small scales are
usually represented by some eddy-viscosity model, which is
basically a model of energy dissipation. Obviously, the
transformation in the present schemes plays the same role
as a filter, as they introduce some numerical dissipation.
This dissipation vanishes when the local Reynolds number
is small enough, i.e., the grid resolution is sufficiently high.

8. CONCLUSION

The idea of global discretization is explored in this paper.
Via this idea, four finite difference schemes for CDET, i.e.,
SOES, SOIS, FOWIS, and FOSIS, were established. The
diffusive length is found to be a significant parameter in
linking temporal discretisation with spatial discretisation.
Further, via an inverse exponential transformation, four
finite difference schemes for the CDE are obtained. The
numerical experiments indicate that higher resolutions are
achieved by the high order schemes, i.e., FOWIS and
FOSIS, compared against the other four schemes, espe-
cially for long-time integrations. The numerical tests show
that the stability requirement for SOIS and FOWIS is much
less restrictive than that for SOES and FOSIS. The grid
refinement study on the schemes for the CDE revealed
that the inverse exponential transformation on the finite
difference schemes for the CDE" tends to destroy some
resolution of the schemes for the CDE and some future
work will address this defect.

APPENDIX: FINITE DIFFERENCE SCHEMES
FOR CDE”

Second-order explicit scheme (SOES),

-1 1 1 -17n-1
Tl]k T{t]k + c{lvc T:l 1jk + Cec Tl+1]k + c:'lc :'/]l‘*lk

17— 1 17—
+oen Tty + b ' Tichy + e ' Tihy + S

1
dy =553
O hinih?

it = [h2h2h2 — 2ky(h2h2 + h2h? + h2h2)]e* d,

n-1

1 — 21,2,k 1 — 1 — 21,2,k
Cgc klhyhze 2d07 C?c - CZC klhxhze 2d07
1 — 212,k
Che = C?C klhxhye zdo
— 1-1.T n-1,T n-1,T
- j (C’ Sl/k + Cwe Sifljk + Cec Si+1jk
n-1,T n-1,T n-1,T n-1,T
tebe st oene 'Stk t el i1 Tt cle S fke) dt.

Second-order implicit scheme (SOIS),

l]k CWch 1jk + CecTH-l]k + CscTt/ 1k + CncTz]+1k

n n nn n-17n-1
+ b Th-q + cieThpe + e T + Sijk

121

1
212 IE + 20 (22 + h2h2 + h2h2)'
ct = h2h2h2 ka do che=chn.= k1h)2,h% do,

— — 2 — — 212
C;zc - CZC - klhxhz d0> Cgc - C;lc - klhxhy dO

l)’l

n-1

d():

C?ilsi]‘k dt.

The truncation error of the second-order schemes,

1 1 1
0 <Z h,%fk{f) +0 (E hﬁ”k%") +0 (2 h%l’k%’)

i=0 i=0 i=0

+ O(7).
Fourth-order weakly implicit scheme (FOWIS),

e = Cwel T + Coc T + Tk T Cne Tk
+ BT + T + st T + Crome T 1
+ el T+ bt ThA Gk + iy Tk
+ et T+l Tt + i Tt
+ b Tty + Ced Tier + Coep T

-17n-1 -1 1 1
+ C?cl T:'i+1jk+l +Cc Tn + Cttvc Tl 1jk

+ el T + i T + ene ' T e
+ e Tty + el Tty + S
dy = 1
6hZhZh? + 12k, (h2h2 + hZh? + hZh?)
¢l = [6h§h§h§ — 4k, (h,zchg + h§h§ + h2h?)]e*2 d,
Che = cbe = h3h2(6k, — h3) do,
cle = che = h3hZ(6ky — h3) do,
Che = cle = hih3(6ky — h2) dy
Chise = Clbne = Cls! = clpd = ki hZ(h3 + hy)e* d
clo' = cly = clp = b = ki h3(hy + h2)e* d,
Chich = Chuet = Clap = Cl' = kih3(h3 + h?)e'2 dy
ciwe' = it = [Rhhs + 2ky(hih? — hihi — hih)]e*2 d,
et = cpct = [hihshy + 2k (hihs — hihy — hyh?)]e*2 d,
che! = cict = [RRhh3 + 2k (hihs — h3h? — hihi)]e*2 d,

o 1 T n-1,T
Ce z]k + CWL l 1jk + Cec si+ljk

til
Sk = f
tnfl

n-1,T n-1,T n-1,T n-1,T
+ Cse Sij-1k T Che Sijrik T Che Sijk—1 T Cie ~Sijk+1
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n-1,T n-1,T n-1,T

+ Cwscsifljflk + CwncsifljJrlk + Cesc Si+ljflk
n-1,T n-1,T n-1,T

T ConeSiv1j+1k T Cesh Sij-1k-1 T Cést S jj-1k+1
n-1,T n-1,T n-1,T

t CenbSijrti-1 T Céni Sijr1k+1 T CwehS i—1jk-1

n-1,T n-1,T n-1,T
+ et S et t CoapSfaji—1 + Cler' S Hijker) dt.

Fourth-order implicit scheme (FOSIS),

ik =
+ b Th-1 + T + Crse Tiajo1k T Clone Tiij1k
+ o Tk + ConcTlajen + CospThi-1-1
+ et Tk + o Thiik-1 T CluT i
+ chep Tiaje-1 + Che T + CoonTivrji-1
+ clThajer T2 T + cp T
+ el T + i Ti e + e ' T ik :
Ch ' Thely + e ' Tk + S
2
dy = L
GhZRZHE + 4k, (22 + I2HE + 1) 3
en = [6h2h2h2 — 12k, (R2H2 + W2h2 + h2h2)]e dy 4
Chve = cie = [2ky(h3hZ — hih3 — hih?) — hihghi] do i
= el = k(2R — W2~ k) — R3] d )
che = cit = [2ka (2R3 — B3hZ — hih2) — hih3h?] do .
Clhse = Chine = Clse = Clne = ki hZ(h3 + h3) d 10
Cliy = Cly = Cluy = Clog = ki 33 + 12) dy b
Clhch = Chves = Clap = Clor = ki h5(h3 + h2) d B
nl — o1 — 122 2Nk 14.
che' = cict = hyhz(6ky + hy)e*2 d, .
et = enct = h2h2(6k, + hY)e*2 d, 13
il = cil = h2h2(6k, + h2)e*2 d, '
Sij = f (27 ju + s D+ i s fo s

CWCTI 1jk + CecTH-l]k + cscTt/ 1k + Cnc Tz/+lk

AT AT AT AT
+ oo Sl T oone 'Sk T eh S o1 el S ) dt.

The truncation error of the fourth-order schemes,

2 2 2
0 (2 h,%fk%‘i> +0 (2 hﬁfk%ﬂ‘) +0 <2 hﬁik%f)

i=0 i=0 i=0

- ) -
+0 <2 hi’k}") (2 hﬁik%")
L \i=0 i=0 .

1 1
(o) (o)
L \i=0 i=0 _
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